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1 Probability over (uncountably) infinite probability spaces

Extending the idea of defining a probability for each outcome becomes problematic when we
try to extend it to uncountably infinite spaces. For example, let Ω = [0, 1]. Let ν : [0, 1] →
[0, 1] be a function, which we want to think of as a probability distribution. Define the set

Sn =

{
x ∈ [0, 1] | ν(x) ≥ 1

n

}
.

Since we want the total probability to add up to 1, we must have |Sn| ≤ n. Also,

Supp(ν) = {x ∈ [0, 1] | ν(x) > 0} ⊆ ∪∞
n=1 Sn .

Since ∪∞
n=1Sn is a countable set, ν(x) > 0 only for countably many points x. Hence, it

is problematic to think of the probability of the outcome x, for each x ∈ [0, 1]. This can
be resolved by only talking of probabilities of events for an allowed set of events obeying
some nice properties. Such a set is known as a σ-algebra or a σ-field.

Definition 1.1 Let 2Ω denote the set of all subsets of Ω. A set F ⊆ 2Ω is called a σ-field (or
σ-algebra) if

1. ∅ ∈ F .

2. A ∈ F ⇒ Ac ∈ F (where Ac = Ω \ A).

3. For a (countable) sequence A1, A2, . . . such that each Ai ∈ F , we have ∪i Ai ∈ F .

We then think of the sets in F as the allowed events. We can now define probabilities as
follows.

Definition 1.2 Given a σ-field F ⊆ 2Ω, a function ν : F → [0, 1] is known as a probability
measure if

1. ν(∅) = 0.
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2. ν(Ec) = 1− ν(E) for all E ∈ F .

3. For a (countable) sequence of disjoint sets E1, E2, . . . such that all Ei ∈ F , we have

ν (∪iEi) = ∑
i

ν(Ei) .

Note that the above definition do not say anything about unions of an uncountably infinite
collection of sets. We can of course define probability measures on F = 2Ω and hence
define ν(x) for all x ∈ Ω. However, as we saw above, such measures will only have
ν(x) > 0 countably many x. Consider the following example.

Example 1.3 Let Ω = [0, 1] and F = 2Ω. Let T =
{

0, 1
3 , 2

3 , 1
}

. For each S ∈ F , define

ν(S) =
|S ∩ T|

4
.

In the above example, ν(x) > 0 only for the points in a finite set T, which is very restrictive.
We would like to formalize intuitive notions like the “uniform distribution” on the space
Ω = [0, 1]: a probability measure that satisfies ν([a, b]) = b − a for a, b ∈ [0, 1] or more
generally, for any event E and a circular shift E⊕ x for x ∈ [0, 1], we want ν(E) = ν(E+ x).
It is a non-trivial result that such a probability measure indeed exists. This probability
measure is known as the Lebesgue measure and is defined over a σ-algebra known as the
Borel σ-algebra. The Borel σ-algebra does not contain all subsets of [0, 1] but does contain
all intervals [a, b]. In fact, one can use the axiom of choice to show that we cannot include
all subsets. The reason is that countable unions of very “thin” disjoint sets can reconstruct
a “thick” set.

Proposition 1.4 Let Ω = [0, 1]. A measure satisfying the requirement that ν(E) = ν(E + x) for
all E ∈ F cannot be defined over the σ-algebra F = 2Ω.

Proof: For the sake of contradiction, assume that such a measure exists. Let B be the
set of numbers in [0, 1) with a finite binary expansion, and define the equivalence relation
between points x, y ∈ [0, 1]:

x ∼ y if ∃b ∈ B such that x = y⊕ b.

Thus x and y are equivalent if we can change only finitely many of the binary expansion
of one, to get the other. Let [x] denote one such equivalence class. Note that since there
are countably many elements in B, [x] is also countable. In particular, [0] = B. Because
an equivalence defines a partition, it follows that there must be uncountably many dis-
tinct [x]’s that are furthermore disjoint. Now, by the axiom of choice, construct a set V
that selects only one element from each such distinct [x]. V thus has uncountably many
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elements, but in some sense, is “thin”. Consider all the circular shifts of V of the form
V ⊕ b for b ∈ B. These are disjoint, since we never recreate the same element within the
equivalence class of a given point x (why?) nor jump from the equivalence class of x to
that of another. Furthermore as b varies, each x recreates its entire equivalence class, and
it follows that: ⋃

b∈B
V ⊕ b = [0, 1].

So now we ask, what can ν(V) be? It certainly cannot be positive, since otherwise ν([0, 1]) =
∑b∈B ν(V ⊕ b) = ∑b ν(V) = ∞. But it cannot be zero either, since otherwise P([0, 1]) =

∑b ν(V) = 0. This is a contradiction.

What went wrong? This is a very involved debate, but essentially the issue is an interac-
tion between countable additivity and our ability to have created V in the first place. The
attitude of probability theory can be interpreted as either denying that such sets exists, or
accepting that they do exist, but refusing to define the probability measure over them. The
latter turns out to be much more productive, because the notion of restricting the proba-
bility measure to only given subsets has many versatile uses, including a generalization of
the notion of conditioning.

1.1 Random Variables

Recall that to define a random variable, we need to define a σ-algebra on the range of the
random variable. A random variables is then defined as a measurable function from the
probability space to the range: functions where the pre-image of every subset in the range
σ-algebra is an event in F .

An important case is when the range is [0, 1] or R. In this case we say that we have a
real-valued random variable, and we use the Borel σ-algebra unless otherwise noted. For
countable probability spaces, we wrote the expectation of a real-valued random variable as
a sum. For uncountable spaces, the expectation is an integral with respect to the measure.

E [X] =
∫

Ω
X(ω)dν .

The definition of the integral with respect to a measure requires some amount of care,
though we will not be able to discuss this in much detail. Let ν be any probability measure
over the space R equipped with the Borel σ-algebra. Define the function F as

F(x) := ν((−∞, x]) ,

which is well defined since the interval (−∞, x] is in the Borel σ-algebra. This can be used
to define a random variable X such that P [X ≤ x] = F(x). The function F is known as the
cumulative distribution function (CDF) of X.
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When the function F has the form

F(x) =
∫ x

−∞
f (z)dz ,

then f is called the density function of the random variable X. In this case, one typically
refers to X as a “continuous” random variable. To calculate the above expectation for
continuous random variables, we can use usual (Lebesgue) integration:

E [X] =
∫

R
x f (x)dx .

(The notion of density can be extended to between any two measures, via the Radon-
Nikodym theorem. In that context, the density f of a continuous random variable is
referred to as the Radon-Nikodym derivative with respect to the Lebesgue measure. In
the earlier example with the measure concentrated on the finite set T, the probability of
each point is the Radon-Nikodym derivative with respect to the counting measure of T:
νT = ∑t∈T δt.)

2 Gaussian Random Variables

A Gaussian random variable X is defined through the density function

γ(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,

where µ is its mean and σ2 is its variance, and we write X ∼ N (µ, σ2). To see the definition
gives a valid probability distribution, we need to show

∫ ∞
−∞ γ(x)dx = 1. It suffices to show

for the case that µ = 0 and σ2 = 1. First we show the integral is bounded.

Claim 2.1 I =
∫ ∞
−∞ e−x2/2dx is bounded.

Proof: We see that

I =
∫ ∞

−∞
e−x2/2dx = 2

∫ ∞

0
e−x2/2dx ≤ 2

∫ 2

0
1dx + 2

∫ ∞

2
e−xdx = 4 + 2e−2 ,

where we use the fact that I is even and after x = 2, e−x2/2 is upper bounded by e−x.

Next we show that the normalization factor is
√

2π.

Claim 2.2 I2 = 2π.
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Proof:

I2 =
∫ ∞

−∞
e−x2/2dx

∫ ∞

−∞
e−y2/2dy =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2dxdy

=
∫ ∞

0

∫ 2π

0
e−r2/2rdrdθ (let x = r cos θ and y = r sin θ)

= 2π
∫ ∞

0
e−sds (let s = r2/2)

= 2π .

This completes the proof that the definition gives a valid probability distribution. We prove
a useful lemma for later use.

Lemma 2.3 For X ∼ N (0, 1) and λ ∈ (0, 1/2),

E
[
eλ·X2

]
=

1√
1− 2λ

.

Proof:

E
[
eλ·X2

]
=
∫ ∞

−∞
eλ·x2 1√

2π
e−x2/2dx =

∫ ∞

−∞

1√
2π

e−(1−2λ)x2/2dx

=
∫ ∞

−∞

1√
2π

e−y2/2 dy√
1− 2λ

(let y =
√

1− 2λx)

=
1√

1− 2λ

3 Johnson–Lindenstrauss Lemma

We will use concentration bounds on Gaussian random variables to prove the following
important lemma.

Lemma 3.1 (Johnson–Lindenstrauss) Let P be a set of n points in Rd. Let 0 < ε < 1. For
k = 8 ln n

ε2/2−ε3/2 , there exists a mapping ϕ : P → Rk such that for all u, v ∈ P

(1− ε)‖u− v‖2 ≤ ‖ϕ(u)− ϕ(v)‖2 ≤ (1 + ε)‖u− v‖2 .
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The above lemma is useful for dimensionality reduction, especially when a problem has
an exponential dependence on the number of dimensions. We construct the mapping ϕ
as follows. First choose a matrix G ∈ Rk×d such that each Gij ∼ N (0, 1) is independent.
Define

ϕ(u) =
Gu√

k
.

Note that by the above construction ϕ is oblivious, meaning that it doesn’t depend on the
points in P , and it is linear. Before we prove the lemma, we will use the following fact
several times.

Fact 3.2 Let Z = c1X1 + c2X2, where X1 ∼ N (0, 1) and X2 ∼ N (0, 1) are independent. Then
Z ∼ N (0, c2

1 + c2
2).

The strategy of proving the lemma is to first prove that with high probability the lemma
holds for any fixed two points and then apply union bounds to get the result for all pairs
of points.

Claim 3.3 Fix u, v ∈ P . Let w = u− v. With probability greater than 1− 1/n3, the following
inequality holds,

(1− ε) · ‖w‖2 ≤ ‖ϕ(w)‖2 ≤ (1 + ε) · ‖w‖2 .

Proof: Recall that ϕ(u) = Gu√
k
. Let

Z =
k‖ϕ(w)‖2

‖w‖2 =
∑k

i=1(Gw)2
i

‖w‖2 .

We need to show (1− ε)k ≤ Z ≤ (1 + ε)k. We know that the sum of Gaussian random
variables is still a Gaussian random variable, so (Gw)i = Giw = ∑n

j=1 Gijwj is a Gaussian

variable. Besides, Var
[
∑n

j=1 Gijwj

]
= ∑j w2

j = ‖w‖2 according to Fact 3.2. In other words,

Giw ∼ N (0, ‖w‖2). As a result, Z = ∑k
i=1

(Gw)2
i

‖w‖2 = ∑k
i=1 X2

i , where Xi ∼ N (0, 1). The
expectation of each individual element in Gw is

E
[
(Gw)2

i
]
= E

[
(Giw)2] = E

( n

∑
j=1

Gijwj

)2
 = Var

[
n

∑
j=1

Gijwj

]
= ‖w‖2 .

In addition,

E [Z] =
∑k

j=1 E
[
(Gw)2

i
]

‖w‖2 = k .
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Now we prove the concentration bound for Z. The proof is almost identical to Chernoff
bound.

P [Z ≥ (1 + ε)k] ≤ P
[
eλZ ≥ eλ·(1+ε)k

]
≤

E
[
eλ·Z]

eλ·(1+ε)k
(by Markov’s inequality)

=
E
[
eλ·∑k

i=1 X2
i

]
eλ·(1+ε)k

=
∏k

i=1 E
[
eλ·X2

i

]
eλ·(1+ε)k

(by the independence of X1, . . . , Xk)

=
∏k

i=1
1√

1−2λ

eλ·(1+ε)k
(by Lemma 2.3)

≤
(

e−2(1+ε)λ

1− 2λ

)k/2

(assume λ < 1/2)

≤ (e−ε(1 + ε))k/2 (let λ =
ε

2(1 + ε)
)

≤
(
(1− ε +

ε2

2
)(1 + ε)

)k/2

(by Taylor expansion of e−x)

≤ e−
(

ε2
2 −

ε3
2

)
k
2 (by 1 + x ≤ ex)

We can derive the other side of the inequality in an analogous way. Thus, we have

P [|Z− k| ≥ εk] ≤ 2 · exp
(
−
(

ε2

2
− ε3

2

)
k
2

)
≤ 2 · exp (−3 ln n) =

2
n3 ,

where we choose

k =

⌈
6 ln n
ε2

2 −
ε3

2

⌉
.

To prove Johnson–Lindenstrauss Lemma, we apply the union bound and get the desired
result

P
[
∀u, v ∈ P , (1− ε)‖u− v‖2 ≤ ‖ϕ(u)− ϕ(v)‖2 ≤ (1 + ε)‖u− v‖2] ≥ 1−

(
n
2

)
2
n3

≥ 1− 1
n

.
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